Kinetic-friendly spoon project Mega Post

That’s a wrap! It’s certainly been an interesting semester, but now I am ready to put it behind me. Reflecting on the spoon project, I have some final thoughts and observations. First, I want to thank the fine folks at CMU School of Design. From the amazing and hardworking faculty and graduate student cohort, I have had nothing less than inspiration and encouragement throughout this entire process, despite the obvious challenges of working remotely.

Rendering of sixth and final (?) spoon design. I pulled the kitchen design (Pierre Gilles) and bowl (Damogran Labs) from GrabCad.com. The spoon and coffee mug are mine.

Rendering of sixth and final (?) spoon design. I pulled the kitchen design (Pierre Gilles) and bowl (Damogran Labs) from GrabCad.com. The spoon and coffee mug are mine.

This project was divided into two parts: the first part focused on exploring different ways of prototyping and making. This was described to me as an informal way of A/B Testing for methods. The second part involved the deliberate iteration of prototypes through user testing — a challenge in the context of a global pandemic and social distancing. To make the most meaningful design choices possible given limited resources, I decided to leverage the power of physical simulation to supplement the making of physical prototypes.

There are a variety of 3D software tools that offer some degree of physical simulation. For this project, I selected Maxon Cinema 4D R20 (Educational License) and Blender as my two ways of making. I chose these because I already am familiar with Cinema 4D and understand know how to manage a workflow in that context, because Blender is open source and free for anyone to use, and both programs work under MacOS and Windows environments (my rendering workstation is a Hackintosh with multiple operating systems, which grants the flexibility to overcome certain technical limitations). My initial experiments with Cinema 4D were… not great.

My very first (and failed) attempt to simulate fluids in Cinema 4D. Carnegie Mellon University School of Design Prototyping for Interaction Spring 2020

As you can see, there are “physics” happening here, but they are not anything close to the physics of the real world. This is not “real world” physics, this is Asshole Physics:

Zachary "Spokker Jones" Gutierrez and I came up with the term "Asshole Physics" when we were discussing the game and the physics models it employed. Basically there's a lot of crap you can knock over and kick around, including dead bodies, buckets, cans, and little sections of drywall which are standing around in the middle of rooms for no obvious reason. Zachary casually mentioned, "I have made it a point to knock over every fucking thing in that game. I am living out my fantasies of being a giant asshole," and I responded by stealing his "asshole" comment and claiming that I made it up. Thus "Asshole Physics" was born.

Without more sophisticated plugins to simulate fluid, Cinema 4D R20 is only “out of the box” capable of non-newtonian semisolids. I can make stuff bump around and “squish.” I can have a 3D character micturating on the side of a building. I can create the appearance and illusion of something like a fluid, but with such restrictions, I could not realistically evaluate my spoon designs. I explored my options and found that Next Limit’s RealFlow plugin would meet my basic needs. Best of all, they offer a free 30-day trial! My initial excitement quickly waned after the plugin failed to install and activate on my system…

(This email chain is long and covers a week of back and forth with customer service. I am including the entire conversation as a way to recreate my experience. While this may not directly relate to the scope of this project, I still believe that there is value in documenting the unexpected problems that crop up when trying to do something new.)

Mail_02.png
Mail_03.png
Mail_04.png
Mail_05.png
Mail_06.png
Mail_07.png
Mail_08.png
Mail_09.png

It took a week to finally get everything sorted with the demo. During that time, I began to explore option B: Blender.

Blender is a free, powerful, open source 3D creation tool. Best of all, it includes the mantaflow fluid simulation engine (since version 2.8). I have worked with Cinema 4D on other projects, and have become fairly comfortable with the interface. Given my experience with Fusion 360, Inventor, and C4D, I knew that I would need to overcome a learning curve before I could use this software to meet my needs for this project. Fortunately, I was able to find a spectacular tutorial series for beginners.

If you want to read more about my experience with the tutorial, click here.

This tutorial was ideal because it involved exercises that helped me learn how to use the interface, and covered several different workflows. I was really impressed with Blender’s node-based material system and procedural textures. You can work stri…

This tutorial was ideal because it involved exercises that helped me learn how to use the interface, and covered several different workflows. I was really impressed with Blender’s node-based material system and procedural textures. You can work strictly with parametric modeling, or you can discretely modify mesh geometry to create highly organic and imperfect forms. I’m excited to work with Blender on future projects. It’s a very exciting time to be working in 3D.

While working through these tutorials, I began sketching and working in Fusion 360 to craft my first spoon designs for part 2 of this project. You can read more about this experience here.

Takeaways from Part 1

I really appreciated the responsiveness from the team at Next Limit. Clearly there are problems with the software’s implementation of their product’s copy protection. This is an all-too-common problem in the world of software. Programmers gotta eat just like everybody else, and we certainly should make sure that the talented and hardworking folks behind the code are able to put food on their table at the end of the day. Piracy can deprive a small business of the necessary revenue to keep the lights on, so I am absolutely sympathetic to this reality and what risks are involved when you release your software for demo purposes. Getting people to pay for something that they can easily get for free is a challenging proposition. At the same time, you cannot realistically expect to get customers to pay for software if they cannot try it first. Ultimately, this one week of back and forth with customer support was a critical loss. I never completed a side-by-side comparison of fluid simulations. While I did eventually succeed at installing and using RealFlow to do fluid simulations, (and was honestly impressed with how easy it was) I did not, however, have enough time to setup a comparable simulation to evaluate spoon designs. My trial expired about a week ago, and I see this aspect of the project as a lost opportunity. If Next Limit applied similar licensing practices as Maxon (verify it through .edu email address), they could offer an educational package of their RealFlow plugin.

Blender really came through for me. The learning curve was aggressive, but not impossible. While I found mantaflow to be a respectable and entirely capable fluid simulator, it was not without its own share of issues. I spent a lot of time making granular tweaks to improve the fidelity of my simulations, while also using the observations from my simulations to inform design decisions for my spoons in part 2 of this project.

Part 2: Design Iterations Based on User Testing

While this project required user testing and design iterations based on feedback, I decided to limit the user evaluations to address handle shape and the spoon’s overall dimensions. This was not an arbitrary decision or an excuse to focus on physical simulation of fluid dynamics (with user testing as an aside). No, this decision was based on the nature of the course from which it was assigned: Prototyping for Interaction Design. This semester I have have been focusing on designing for interaction (arguably, all designers do, at some point in their process, focus on this aspect). When thinking about the tools we use (to eat food) as a system, it is important to consider the touchpoints involved. The handle of a spoon is a non-trivial component. It can take on many forms, and naturally includes affordances. How someone holds a spoon, and how easy it is for them to use it are central to the evaluation of the design.

The iterations of design were highly generative in nature, inspired by both user evaluations and physical simulations, I maintained a homeomorphic continuity: treating the initial shape as an elastic form to be molded and reshaped to maximize performance. Knowing how a concave shape might be optimized to perform under rapid movement — I wanted to create something that would be useful, and the physical simulation of fluids facilitated a means of evaluation — is only one aspect of a more complicated interaction, and this test alone could not fully address human needs. When physical form is designed and directed to improve user interaction (and physical properties are given equal consideration), it is possible to create a truly useful tool. I realize that this is a very technical description, but it is easier to understand when properly visualized. I have rendered a compilation sequence to show how this spoon shape evolved to its final(?) form (I am still considering a physical prototyping stage for this project over the summer).

A sequence of fluid dynamics tests designed to evaluate fluid retention of concave forms. Carnegie Mellon University, School of Design, Prototyping for Interaction, Spring 2020.

Toward the latter half of this sequence, you will notice a change in colors (for both the liquids and spoons). I decided to differentiate the final rendering sequences as these were based on user evaluations. The colors chose for these final sequences are based on the color tags used for the user test:

These printouts are derived from DXF vector images exported from Fusion 360. The designs shown are oldest (top) to newest (bottom). The fifth design (blue) is rendered with a blue body and green liquid.

These printouts are derived from DXF vector images exported from Fusion 360. The designs shown are oldest (top) to newest (bottom). The fifth design (blue) is rendered with a blue body and green liquid.

I printed and mailed the paper prototype to a potential user suffering from ongoing hand tremors (my partner’s mother). I sent this without written instructions. Instead, I only provided different color tags to facilitate feedback. My user let me know that the red spoon handle was in the “Goldilocks” zone in terms of size and shape: not too big, not too small, not too curvy, not too straight. Using this feedback I constructed the sixth and final (?) form — see the first image of this post.

The user test included a direct side-by-side comparison with existing dinnerware.

The user test included a direct side-by-side comparison with existing dinnerware.

Before developing these simplified paper prototypes, I also experimented with ways of making more three-dimensional forms that could be sent in the mail. While this novel approach showed some potential, I was concerned with how user error might complicate or (even worse) bias feedback. Still, these paper prototypes helped me to better understand and interpret the scale of my 3D models.

PaperPrototype_01.jpg

Final Thoughts

This project still feels somewhat incomplete. Perhaps this is because the generative design process itself can always demand further iteration, or maybe it is because I have not yet created a physical prototype that can actually be tested as an eating instrument. Maybe it is only because there were still a few “rogue droplets” (grrrrrr) that I simply could not keep contained with the completion of my sixth iteration. Whatever the net effect might be from these various shortcomings, I am pleased with the learning opportunities that were presented throughout this exploration of design.

Were I to continue with this process, the next steps would be to 3D print the latest shape using a food-safe material (there are a few third-party vendors that offer this service). I would then ship that latest design for further user evaluation. I believe that there are still many additional iterations necessary before I could defend having created something that satisfies the criteria I set out with this project (i.e., a spoon that overcomes the challenges of involuntary muscle movements and essential tremors).

If I were to collaborate with others, I would also want to evaluate the ecological and economic impact of such a device. How might we go about manufacturing to appropriate scale? How might additional user tests with a wider audience influence the existing form? There remains many unanswered questions and a newfound respect for the power of generative design.

Spoonfuls of updates

This week was packed full of progress on multiple projects. I received feedback for my group’s birth control information app “MyGallery.” Our work was even featured on CMU’s Design page.

Crafting an iconographic representation for the withdrawal method was my proudest moment.

Crafting an iconographic representation for the withdrawal method was my proudest moment.

I’ve continued to explore fluid simulations with Blender. I’ve ran into some technical hurdles: Blender 2.82 uses a variety of protocols to leverage GPUs for rendering and computation. It offers an AI-driven denoiser (Optix), CUDA path tracing, and OpenCL. My MacBook Pro has an AMD Radeon Pro 5500M GPU as well as the option to plug in a Radeon Frontier Edition (first generation Vega) eGPU on Thunderbolt 3. Plenty of GPU compute power in either configuration, but there is a snag: MacOS 10.15 (Catalina) has deprecated OpenCL in favor of Metal 2+. CUDA and Optix are proprietary to nVidia GPUs. Apple hasn’t shipped a Mac with nVidia GPUs since Kepler launched (GeForce 700 series). Blender supports AMD ProRender, but I found it was terribly unstable.

I could easily slip into a tangent about how unfortunate the breakup between Apple and nVidia truly is, but I will spare you.

My current workflow involves queuing some tasks to my desktop, running Windows 10. The GPUs are dual Radeon VIIs. Unfortunately, I found that rendering on Blender is unstable when both GPUs render in parallel. No problem, since I can free up the other GPU for Folding@Home (a hobby of mine that has exploded in response to COVID-19). Who would have guessed that a global pandemic would boost a distributed computing project to exascale?

Despite these obstacles of platform compatibility, I have made significant progress on my simulation-based research. It is difficult to understate how exciting this project has been for me. For some context: the ASCI Red supercomputer (at the Sandia National Laboratories) was built in 1996, and was the fastest supercomputer in the world until 2000. It was the first computer to achieve true terascale computing (one trillion floating point operations per second). I built my first terascale computer in 2013. This was shortly after leaving my job at Intel. There was something very gratifying about building a computer with a CPU I helped manufacture. GLaDOS G4 (you can see the project here, scroll down to “Everything Else”) was built with a GeForce GTX 780 GPU and Intel Core i7 4770k overclocked to 4.5 GHz. It ran nearly silent and fit inside an up cycled Apple Power Mac G4 (microATX equivalent) case.

The ASCI Red supercomputer was designed to simulate nuclear weapons tests. Today, I am using a system roughly ten times more powerful to simulate soup spilling out of a spoon. I was inspired to approach this problem by two projects. The first was a 2013 project from Portland State University (my alma mater) to make a coffee cup for zero-gravity environments. they used drop cages and 3D printing to iterate several designs until they had a shape that held liquid. “It wasn’t needed, but it was requested.”

The other project hit me right in the heart.

The S’up Spoon is the embodiment of good design. The design was inspired by deep empathy for a user’s problem, and the solution involves as little design as possible. There are few technologies in this world that we trust enough to put in our mouths. If you can make it in this space, you can make it (almost) anywhere. During the fall semester, Moira and I visited the Carnegie Museum of Art. They had an exhibition on accessibility design, and I was brought to tears by stories of innovation and vibrant improvements to quality of life for people with disabilities. Technology, at its very best empowers people to realize their fullest potential. We can easily get lost in the exhilaration of the complex, but this impulse must not dampen our ability to appreciate the elegance of simplicity. Some problems are best solved by form. I saw many incredible solutions in that exhibition, but this spoon has really stuck with me.

My goal is not to make something better, but perhaps a little bit different. The shape of the S’up spoon is intuitive, and if we had never seen a spoon before, we might conclude that it is the better design over more traditional forms. It is however, under our current cultural context, a strange thing to behold. It looks more like a wizard’s pipe or a warrior’s horn. It is beautiful and ergonomic. I do not intend to elevate those specifications. Instead, my goal is to make a spoon that is inconspicuous while still achieving similar results for users who suffer from motor movement difficulties.

How has my first design faired under simulation?

While I can certainly see the appeal of a long hollow channel, I’ve become increasingly concerned with how this shape my be difficult to keep clean. I can imagine objects getting wedged toward the back depending on what is being consumed. I have began to work on a second iteration with a more shallow channel. Still, this first iteration does fairly well. It is managing to retain most of the 15ml (i.e., 1 tablespoon) of fluid under rapid movement.

I enjoyed this simulation so much that decided to make a rendering:

I have not yet gotten back into Cinema 4D to evaluate RealFlow. Despite the challenges regarding compatibility, I am truly impressed with how powerful this open source software has become with this latest release.

Now that I have established this workflow, I can easily switch out revised designs to test under identical conditions. I’m still not sold on the current handle shape, and I think I can improve liquid retention by tweaking the angle of the lips. The flat bottom (Chinese style spoon) does fairly well, with it’s obtuse angle walls. Next, I will try a concave structure with a wider base for the handle and a more aggressive descending angle.

Reframing Climate Action

Climate change represents an existential threat to all human and non-human life on our planet. This is a global crisis. It is a complex, compounded problem, representing a multitude of technological, political, and economic challenges; as big and complex as they are, we should welcome these challenges. We can start by reframing the debate. Later this month, families in the United States will gather to celebrate Thanksgiving. You may find yourself sitting at a table with someone who opposes the radical transformations necessary to address the climate emergency — someone who refuses to acknowledge the dire warnings from climate scientists, and who sees no real need to change our economy, food production or modes of transportation. Instead of browbeating them for their lack of concern or sense of ecological stewardship, consider this alternative: talk about how exciting this transformation could be.


Sustainability cannot be achieved if the only source of inspiration is our fear of a climate catastrophe. We need enthusiasm and a sense of adventure; we need to dream of big, radical shifts from the brightest corners of science fiction. We need to inspire people’s imagination, and show them a future that is possible: with proper planning and investment into new technologies, we can build something better. Recycling our plastic bottles, taking public transportation or riding a bicycle to work might make us feel good about our carbon footprint (and if you do these things, thank you), but these kinds of actions do little to inspire. We need a moonshot of new technologies that make fossil fuels obsolete. This cannot be a lateral transition.


One of the most common objections to adopting the necessary changes and policies to address climate change (e.g., generating 100% of our electricity from solar, wind, and other renewables, massive expansion of public transportation infrastructure, abandoning fossil fuels in virtually every area of the global economy, sweeping reforms to agricultural practices and global trade, etc.) is the notion that these changes are both radical and sudden. In fact, these changes are. It is radical to reshape how people power their homes, what they eat, or how they commute to and from work. The IPCC says that “unprecedented and urgent changes” are needed to keep warming below 1.5°C, and that failing to meet that goal will have catastrophic impact. In fact, even with the target of 1.5°C we are likely to see significant ecological impact beyond what has already taken place.


What these objections fail to account for is that radical change is happening, and it will continue so long as new technologies are being developed. At the beginning of the twentieth century, most people traveled long distances by rail, ships, or even by riding on the backs of domesticated animals. The Wright brothers sparked a radical change in 1903, when they successfully completed the first heavier-than-air powered flight in Kitty Hawk, North Carolina. Less than thirty years later in 1927, Charles Lindbergh became the first aviator to successfully complete a non-stop trans-Atlantic flight. A little more than a decade later in 1941, the Japanese Imperial forces launched a massive naval air strike against the United States Pacific Fleet at Pearl Harbor. That same decade, in 1947,Chuck Yeager became the first pilot to break the sound barrier. Roughly twenty years after that, in 1969, Neil Armstrong walked on the moon. By the end of the twentieth century, massive fiberoptic networks and satellites connected people from around the world and enabled communication at the speed of light.


It is an undeniable fact that some of the most transformative technologies of the twentieth century were not planned by governments or voted on by the consent of the public, but instead began with hobbyists. From powered flight to the home computer, radical change can come from the most humble beginnings. With proper funding, institutional support, public and private investments, and an insatiable drive for continual improvements, these new technologies have reshaped every aspect of our daily lives.


Even though it is commonplace today, flying on a commercial jet is still an adventure. One century ago, the wealthiest and most powerful people in the world could not enjoy the convenience or speed we now take for granted. It is an optimistic act to step inside of an aluminum tube and to trust total strangers to safely accelerate to over five-hundred miles per hour, thirty-thousand feet above the ground.


Unfortunately, this miraculous convenience comes at a heavy price: air travel is also a major source of greenhouse gas emissions. According to one study from 2016, air travel alone could account for a quarter of our carbon budget by the year 2050. This is alarming but not hopeless. We do not need to abandon air travel and or return to riding on the backs of horses. The fundamental physics of aviation do not even require burning fossil fuels. In fact, there are already a number of prototype hydrogen-fueled aircraft that fly without producing any carbon emissions. Research indicates that hydrogen is the most suitable alternative fuel; hydrogen is abundant (it is the most common element in the known universe) and because it burns clean, it could extend the life of jet engines by 25%.


Why stop there? Jet A-1 (one of the most common jet fuels in use today) was developed in the 1950s. Considering the rapid progress of modern aviation, why should we continue to use a seventy-year-old fuel? Jet A-1 has a maximum burn temperature of roughly 4,000°F; that is impressive, but hydrogen can burn over a thousand degrees hotter at 5,100°F. The byproduct of burning this fuel is water vapor. What can we do with that extra thermal energy? SABRE hypersonic Reaction Engines are currently in development, and could potentially lead to commercial aircraft with a speed of over 4,000 mph. That’s three times faster than the (now defunct) supersonic Concorde airliners.


Imagine flying from New York to London in one hour.


That’s exciting, but I forgot to mention something: that speed only accounts for altitudes of 30,000 feet. Hydrogen-oxygen engines, unlike their antiquated kerosene-burning counterparts, are not dependent on atmosphere for their combustion. At higher altitudes, where there is no atmosphere or wind resistance, these hypersonic jets could reach speeds of up to 19,000 mph. Imagine flying from London to Sydney in less than four hours. This is radical change; it is faster, higher, hotter, and cleaner than anything we have ever built before, but it is not unprecedented. This is what we have always done: better, and more exciting.

 United Nations, “Special Climate Report: 1.5ºC Is Possible But Requires Unprecedented and Urgent Action” 08 October, 2018. (https://www.un.org/sustainabledevelopment/blog/2018/10/special-climate-report-1-5oc-is-possible-but-requires-unprecedented-and-urgent-action/)

 Roz Pidcock, Sophie Yeo, “Analysis: Aviation could consume a quarter of 1.5C carbon budget by 2050” 08 August, 2016. (https://www.carbonbrief.org/aviation-consume-quarter-carbon-budget)

 Andrew J. Hawkins, “This company wants to fill the skies with hydrogen-powered planes by 2022” 14 August, 2019. (https://www.theverge.com/2019/8/14/20804257/zeroavia-hydrogen-airplane-electric-flight)

 A. Godula-Jopek, A. Westenberger, “Compendium of Hydrogen Energy, Vol. 4: Hydrogen Use, Safety and the Hydrogen Economy” 2016. (Pages 67-85)

 Rachel Cormack, “This Hypersonic ‘Space Plane’ Can Get From New York to London in One Hour” 27 September, 2019. (https://robbreport.com/motors/aviation/sabre-hypersonic-space-plane-2871535/)